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ABSTRACT 
 

The authors will review the use of PrimeTime PX (PT PX) to measure active power.  With PT 
PX, one will always get a power value.  However, one cannot always rely on this initial power 
measurement.  We will review the conditions under which the generated power numbers are 
inaccurate and provide strategies to avoid these pitfalls.  We will describe a forced gate based 
flow using VCS and PT PX which enables one to accurately measure power and effectively 
debug the power measurement results, and describe how this flow can be extended to 
accurately measure glitch power. 
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INTRODUCTION – ACTIVE POWER VS. LEAKAGE POWER MEASUREMENT METHODOLOGY 
Static leakage estimation is a fairly well solved problem with easy to use solutions.  The full 
Synopsys tool suite supports static state probability propagation [1] for calculating gate-level 
leakage.  Simple summations of the total device width or the total device width attached to 
power and ground supplies can be used to calculate reasonable leakage approximations.  Full 
state dependent leakage is typically an output of most active gate-level power measurement 
flows [1].  Leakage power is not nearly as pattern dependent as active power.  Hence, any 
method which gives a consistent estimation of whether an inverter is driving high or low can do 
a reasonable job at estimating leakage.  Fine-grained state-dependent power gating would 
complicate leakage power determination, but the authors have yet to see much of this. 

However, the full calculation of active gate-level power is not nearly as mature.  The accurate 
calculation of active power requires determining an accurate activity at each gate-level node, 
and this is much more pattern dependent than leakage calculations.  The three most common 
methods we have seen to determine the activity at each node are: static propagation of activity 
factor, full gate-level simulations, and forced-gate gate-level simulations.  PrimeTime PX (PT 
PX) can be used to support all three of these methods.  

PT PX (as well as the rest of the Synopsys tool set) supports static propagation of the activity 
factor and it is a fairly straightforward extension of the static state probability propagation used in 
leakage estimation.  One creates a mapping between RTL nodes and gate-level nodes and 
forces the probability on the mapped gate-level nodes based on the results of an RTL 
simulation.  However, due to the pattern dependence of active power, one needs to map the 
state of enough nodes such that the probability propagation from these nodes validly covers all 
other nodes.  Mapping and forcing just the sequential nodes, EBB outputs, and top level inputs 
are typically not sufficient.  Adding other mapping points, such as interfaces between modules, 
can increase the accuracy of static propagation, but the authors have yet to find a method to 
determine a set of sufficient additional mapping points. 

Full gate-level simulation (GLS) is an obvious choice to get the activity at each gate-level node.  
However, full GLS runs are notoriously difficult to get running correctly, and this approach was 
not considered viable for the large number of tests we hope to run. 

A forced-gate GLS supplies the same power estimation accuracy as a full GLS without the need 
to get the full GLS working.  In this approach, a RTL-to-gate-level mapping of external interface 
signals, state nodes, and embedded black box (EBB) outputs is created, and the cycle-by-cycle 
values of these signals are collected during an RTL simulation.  This collection of nodes is 
sufficient to define the state of the non-EBB part of the gate-level logic at any point in time.  A 
GLS is then run where the states of these mapped signals are forced to the value collected 
during the RTL simulation, and the simulator calculates the non-forced nodes based on the 
value of the forced nodes.  In reality, one does not need to have a complete mapping of all the 
gate-level states to an equivalent RTL node, because the GLS simulation can calculate the 
value of state-nodes base on the rest of the mapped values.  The result of the GLS is the 
activity of all the gate-level nodes.  This activity can then be used by a power analysis tool to 
accurately calculate active power. 

We chose to implement a power analysis strategy based upon the forced-gate GLS 
methodology using VCS B-2008.12 and PT PX C-2009.06-SP1.  We will review why the 
existing forced-gate methodologies were not sufficient, what could be done to improve them, 
and the issues we had with both VCS and PT PX while implementing this methodology.   
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SEARCH FOR A FORCED-GATE ACTIVE POWER MEASUREMENT FLOW 
The choice of a forced-gate flow for active power measurement seemed obvious; however, 
finding an appropriate flow was not as easy.  The flow needs to address the three main steps of 
the forced-gate methodology: creating a state mapping between RTL simulation VCD and gate-
level netlist, running a GLS forcing the mapped nodes, and then using the GLS results to 
calculate active power.  The PT PX cycle-accurate peak power (CAPP) flow [2] seemed to 
provide the ultimate forced-gate power flow, and promised to elegantly solve the three main 
steps of the forced-gate process.  

In order to create the state mapping between the RTL simulation VCD and the gate-level netlist, 
the Design Compiler/Design Compiler Topographical (DC/DCT) synthesis tool has the ability to 
keep track of all the name remapping that happens to the RTL during synthesis, and writes out 
a SAIF map file which records these changes.  The SAIF map file output from DC/DCT can 
then be read into PT PX to allow PT PX to correlate RTL VCD names to their gate-level 
equivalent names.  This problem gets complicated by the fact that the simulation and synthesis 
models for sequential elements are different in our database.  The RTL simulation cannot be run 
with the synthesis models because the synthesis models use Intel-specific width-based array 
instantiation enhancements which are recognized by DC/DCT, but not by VCS.   

With the SAIF map file, PT PX can then read in a RTL VCD simulation file, map the appropriate 
nodes to the appropriate gate-level states, and logically propagate the RTL mapped nodes to 
the unmapped nodes.  This feature is called “cycle-accurate peak power” or CAPP flow.  PT PX 
logically propagates the nodes by, in essence, running an internal GLS starting from the forced 
nodes.  PT PX then internally captures this simulation data, eliminating any potential data 
volume problems inherent in using a large VCD from a GLS, and calculates the appropriate 
instantaneous power and average power. 

Unfortunately, the promise of the PT PX CAPP flow was clouded with mapping issues.  
Debugging mapping issues was very slow, and there were no good ways to determine which 
RTL nodes were mapped to which gate-level nodes.  STARs were filed against PT PX and 
Power Compiler for mapping issues [3, 4, 5, 6, 7], and we were not confident in using the CAPP 
flow as we expanded to rest of our design.  Although it seemed as though the logic propagation 
simulation and subsequent power calculation worked as expected, we stopped work on this PT 
PX flow because we could not validate that the mapping was working appropriately.   

Synopsys has since then updated the CAPP flow to address concerns related to RTL-to-gate-
name mapping, especially in the D-2009.12 version, where the name mapping file is given 
preference over automatic name mapping from the SAIF or VCD file. Synopsys has also 
enhanced the reporting of the name mapping process to specify which design object in the RTL 
switching activity file (VCD or SAIF) is mapped to which design object in the gate-level design 
[8].  We plan to reevaluate the CAPP flow in the future.  Eventually we expect the CAPP flow to 
be working appropriately, but for the near term we still expect the added ability to debug a non-
integrated flow to outweigh the advantages of the integrated CAPP flow. 

In the end, we decided to create our own forced-gate simulation flow using VCS.  The steps are: 

1a. Run formal comparison, or equivalence checking, to generate a RTL-to-gate mapping file 
consisting of primary inputs, sequential cell outputs, and EBB outputs 

1b. Translate the RTL-to-gate mapping into RTL-simulation-VCD-names-to-gate-names 
mapping  

2a. Take the mapping file and RTL VCD and generate the appropriate inputs to control the VCS 
GLS (through a custom Verilog Procedural Interface, or VPI, routine) [20,21] 

2b. Run VCS and generate gate-level VCD file 

2c. Post-process VCD file (bit-blast VCD file), and run vcd2saif to generate a SAIF file from the 
VCD  

3. Run PT PX with the gate-level SAIF file to determine active power 
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In order to ease the generation of the RTL VCD name to gate name mapping (Step 1b), the 
library simulation models were updated to have a consistent naming convention for the 
appropriate net or pin within the standard cell model to force.  This is not really required, but it 
did provide a simple solution for the case of sequential cells with an inverted output as well as 
sequential cells with both an inverted and a non-inverted output.  Always forcing a non-inverted 
internal node of the sequential cell provided a simple way to translate from the internal node 
supplied by the formal comparison map file to the appropriate node to force during GLS.  In 
addition, the use of a VCS VPI routine to force the nodes simplified this mapping because the 
VPI routine was designed to be able to force pins, nets, and the state of user defined primitives 
(UDPs).  

One obvious characteristic of our flow is that we annotate switching activity with a SAIF file 
instead of a VCD or FSDB file (Step 3).  A SAIF, or Switching Activity Interchange Format, file 
describes switching activity statistics instead of the actual toggle activity. We have found that 
there are multiple bugs in the way PT PX processes a VCD file which can lead to dropped 
toggles.  In one case, when using unit delay models, enough toggles were dropped that we saw 
about a six percentage difference in total active power between activity annotation with a VCD 
file versus annotation with a SAIF file.  After a detailed debug, we concluded that the power 
value derived using a SAIF file was correct.  It was possible to reduce the issue to a small test 
case which we have submitted to Synopsys.  We have filed multiple bug reports and STARs on 
the issues we saw.  In general, we see ordering and bus related issues leading to dropped 
toggles, when using VCD or FSDB files to annotate activity into PT PX.  We will discuss specific 
cases in subsequent sections of the paper.  

Figure 1 is a flow chart of the forced-gate flow which will be described in more detail in the 
sections on using the flow to measure power from zero-delay simulation VCD (i.e. non-glitch) 
and measuring glitch power with full SDF backannotation. 

 

Key Learnings:  

1) PT PX cycle accurate peak power (CAPP) flow, although it holds great promise, was not 
ready for production use due to name mapping issues. 

2) In order to allow easy adaptation to a wider variety of requirements, the forced-gate flow 
should be broken into three distinct steps: create a mapping between RTL VCD and gate-
level netlist;  given the mapping file, RTL VCD, and the gate-level netlist, run the simulation;  
given the gate-level VCD, netlist, SPEF, and library collateral, calculate the active power 

3) Annotating gate-level activity in PT PX with a SAIF file is a more reliable way than using an 
FSDB or a VCD file. 
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Figure 1: VPI Forced GLS Flow  

(Dashed lines depict additional steps for glitch power calculation) 
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PERFORMING ZERO GATE DELAY POWER (NON-GLITCH POWER) MEASUREMENTS 
We started with the power measurement flow using zero gate delay library models.  Because it 
does not model the cell or interconnect delays, it is simpler to simulate, but it still exercises all 
the same flow steps as the full glitch power flow.  The RTL inputs, the RTL VCD to gate-level 
mapping, and the PT PX measurement flow are exactly the same between these two simulation 
modes.  In the zero gate delay model, we force the output pin of each sequential element; 
whereas, in the full gate delay model we force a node corresponding to the input of the 
sequential.  The ramifications of this distinction will be described later in the full gate delay 
simulation section of this paper. 

One issue that arises when comparing RTL simulation and GLS runs is that X's are often not 
handled the same way in RTL as they are in GLS runs [9].  Our solution to this problem is to 
eliminate, wherever possible, X's from both the RTL simulation and the GLS.  VCS provides 
options (+vcs+initmem and +vcs+initreg) to initialize the state of registers (SystemVerilog 
types are treated like registers) and memories.  However, these routines do not initialize the 
state of UDPs.  This issue was filed with Synopsys [10].  As a workaround, a VPI routine was 
created which can initialize the state of all the elements in the simulation.  This VPI routine is 
invoked at the beginning of the RTL simulation to initialize the RTL model.  With this method, the 
RTL VCD used to determine the value of the forced-gate state nodes contains few to no X 
states. 

A formal comparison step was used to create the mapping between the simulation RTL and the 
gate-level netlist.  In order to allow flexibility in which formal comparison tool could be used, we 
could not depend on the formal comparison hints, an SVF file, which DC/DCT can write out.  
Instead we added automation to create an appropriate RTL to gate level seed map file. 

One key technique for this mapping automation was to read the RTL into DC/DCT and assign 
the initial unmapped names of the sequential elements to a user attribute.  A change_names 
step was then performed, and then this existing user attribute could be used to write out a file 
giving a direct mapping from the original to the changed sequential element names.  Another 
complication to the mapping was the fact that the simulation modeling and implementation 
modeling of certain elements was substantially different.  Our formal verification is from the 
simulation model to the gate-level output of the implementation model, so the mapping created 
needs to understand these different modeling methods.  However, by far, the most complicated 
mapping issues were created by nested RTL generate statements and nested for loops.  The 
sequential name created often gives an indication of the variables used in the for loop or 
generate steps, but they do not give an indication of the order of these indexes.  If a coding 
convention was applied in which the name of the index variable indicated the order of the loop 
nesting relative to the order of the indexes in the variable name, this would have greatly 
simplified the initial seed mapping generation.  A Perl program was created which reads the 
original-to-changed-names mapping file created, RTL nodes, and gate nodes needing to be 
mapped, and attempts multiple heuristics in order to create a seed mapping between the RTL 
and gate nodes.  The mapping does not need to be complete; because if a reasonable seed 
mapping is supplied, then the internal mapping algorithms of the formal comparison tools can 
do a good job at completing the rest of the mappings. 

After the appropriate mapping is established, the RTL VCD file then needs to be read to provide 
the appropriate states to force onto the gate-level netlist.  We looked at three different ways to 
do this: 

1. Compile the force values directly into the Verilog code using a custom Verilog test bench 

2. Use Unified Command Line Interface (UCLI) forces 

3. Use a VPI routine to force signals 

The custom Verilog test bench ran very fast, but for large test benches it dramatically slowed 
down VCS compile times and required a VCS model rebuild every time the force inputs 
changed.  If one creates a UCLI force file where each node is forced using a "force <node-
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name> <value>" statement, the UCLI run time becomes very long due to the fact that VCS 
looks up the <node-name> for each force statement.  A procedure written to use the VPI allows 
the results of this lookup to be cached and used for all subsequent force statements.  As 
shown in Table 1 below, this allows the VPI approach to complete in nearly the same amount of 
time as a regular GLS.  One can speed up the UCLI simulation time by forcing multiple values 
for each UCLI force statement.  An example of this would be "force {clk} 0@10, 1@20, 
0@30, 1@40".  However, we decided to stick with a VPI routine due to the flexibility it provides in 
picking the node or pin to force and the fact that it allows for a more compact force file. 

 

 Regular GLS 
Run Time 

UCLI Forced GLS 
Run Time 

VPI Forced GLS 
Run Time  

500K instance cluster 23 min Crashed after 24 hours 25 min 

Table 1: Comparing Different GLS Run Times 

 

The node trace output of the forced-gate GLS run is then read into PT PX to supply the gate-
level node activity.  We were originally capturing the trace output into a FSDB file and feeding 
this FSDB file directly into PT PX.  However, this caused subtle issues.  PT PX really depends 
on the ordering of the events in the trace output file to determine which input event in a gate 
caused the output to change.  This allows PT PX to capture arc-dependent power even in a 
zero gate delay simulation.  The order of events in a VCS VCD file corresponds to the order of 
events in the event-driven simulation, so the inputs which cause the output event to happen are 
listed before the output event.  PT PX depends upon this ordering.  Unfortunately, FSDB files do 
not preserve this ordering of events.  Synopsys has talked to SpringSoft (formerly Novas) about 
this issue. SpringSoft has the capability to add sequence numbers to preserve the ordering in 
FSDB files, but its FSDB-to-VCD file converter did not consider the sequence numbers.  
SpringSoft has enhanced its FSDB-to-VCD converter to consider the sequence numbers in the 
FSDB file beginning with its early 2010 version.  Nonetheless, we have standardized on using 
VCS generated VCD files as the source of PT PX gate-level activity input.  It should be noted 
that the use of sequence numbers causes the FSDB file size to increase by as much as 10%. 

In general, if PT PX gets confused about which input event causes the output to transition, it 
calculates the power of the output transition to be the average of all the potential input 
combinations assuming a ZERO slope on the inputs [11].  This means the library needs to give 
reasonable power values for the zero input slope case.  One sanity check for a library is to set 
all the node slopes to zero and measure the power delta between the zero slope and the actual 
slope conditions.  Synopsys has agreed that a zero slope is not a good choice, and an ESTAR 
[12] has been filed to switch this measurement condition to the average slope of all the 
controlling inputs. 

Other issues encountered in, and filed against PT PX, involved processing of bussed nets and 
bussed EBB pins where non-existent glitching was produced after parsing the VCD file [13].  
Another related issue observed with bussed nets and pins was that PT PX reported incorrect 
toggle counts for nets connected to bussed inputs of EBBs [14].  In general, we found that PT 
PX can get confused when there are multiple changes within a single time step and the bus 
values changed in such a manner that certain bits of the bus have multiple transitions during the 
time step.  Our workaround for this issue is to bit-blast the VCD file, and dump out a value 
change for each bus bit only when the bit actually changes value.  The vcdpost Synopsys utility 
with the +unique option can be used to accomplish this manipulation.   

We have also noticed a case where even if the switching activity was annotated through PT PX 
set_switching_activity commands (instead of reading in a SAIF or VCD file), PT PX reports 
the wrong cell internal power for two identical cells with same input transition time and output 
load, but one cell has a bussed net feeding in and the other has a non-bussed net feeding in 
[15].   
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Finally, we converged on using a SAIF file (generated from the post-processed VCD file) in PT 
PX in order to get our power measurements and avoid any remaining false toggles in the VCD 
file.  We lose the capability to observe peak power by not using a VCD file, but for average 
power measurements, using a SAIF file seems to be safer than using a VCD file. 

One other issue involved the behavior of report_power omitting cells with negative internal 
power but positive total power from the default power report [16]. This issue was fixed in the 
next service pack release of PT PX (C-2009.06-SP3).  

In our Synopsys libraries, output pin capacitances are specified for standard cells.  PrimeTime 
includes the output leaf pin capacitance in the output load, when performing table lookups in the 
libraries to determine cell delay and output transition times. But PT PX omits this output leaf pin 
capacitance for both switching power and cell internal power calculations.  This causes the 
active power correlation of PT PX to our internal transistor-level power analysis tool to be off by 
a reasonable amount.  We worked around this issue by adding the output pin capacitances to 
the nets connected to these output pins.  This workaround is not perfect since it affects the node 
slopes, which in turn affects the power calculation. The appropriate fix is to include this output 
leaf pin capacitance in the calculation of the power tables. 

During the course of implementing our power analysis flow, we considered switching to PT PX 
D-2009.12-SP1 to take advantage of some of the bug fixes and new features.  However, an 
issue with the VCD and SAIF file reader, which reported twice as many cells in the log after 
reading the activity file, caused us to stick with the C-2009.06-SP1 version [17].  Synopsys has 
scheduled the fix for this issue for its D-2010.06-SP2 PT PX release. 

 

Key Learnings:  

1) Need to use VCS generated VCD files rather than FSDB files as the starting point for PT 
PX gate-level activity inputs 

2) Need to validate that PT PX library gives reasonable results for zero input slopes, as PT PX 
assumes zero input slopes when it cannot determine the input event causing an output 
transition 

3) Attempt to get the RTL team to adopt a naming convention for the indexes of nested 
generate statements and for loops, which indicates the order of the nesting relative to 
the order of the indexes in the variable names 

4) The use of VPI routines allows a forced-gate simulation to run at nearly same performance 
as a regular full GLS 

5) Removing X’s from the gate-level power simulation by initialization of the gate-level model 
eliminates potential RTL-to-gate simulation mismatches due to the propagation of X values 

 

PERFORMING FULL GATE DELAY POWER (GLITCH POWER) MEASUREMENTS  
Measuring the active power due to glitches, those transmitted from the input of a cell to its 
output (Synopsys calls these transport glitches) and those just at the input of a cell (Synopsys 
calls these inertial glitches), require the use of toggle data generated from an SDF file-
backannotated forced-gate VCS simulation.  The glitch power cannot be measured directly.  In 
order to determine the actual power contribution of glitches, the active power from a PT PX run 
utilizing a VCD file from ideal (zero delay) simulation should be subtracted from the active power 
from a PT PX run utilizing a VCD file from a SDF backannotated forced-gate simulation.  The 
difference between these two runs is the glitch power. 

The SDF files used by VCS in forced-gate simulations are generated from PrimeTime runs with 
post-route data (netlist and SPEF parasitics) and timing constraints. 

The Verilog simulation libraries used for the force-gate simulation were modified so that each 
sequential cell included a fixed internal net name which could be forced to set a value at the 
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input of the sequential element (we called this net "force_d").  The cell was also modified such 
that an internal net connected to the clock input of the sequential element was also given a fixed 
name (we called this net "force_c").  Internally, the clock input net was inverted appropriately 
such that force_c was always defined to be active high even if the sequential was an active 
low sequential cell, and was zero delay buffered from the cell clock pin, such that the force_c 
net could be toggled without changing the value of the cell clock pin.  Modifying the cell 
description this way allowed a cell value to be forced in the same manner independent of the 
actual sequential cell type.  Note these internal nets are not included in the Synopsys .lib files 
used for power analysis, so the activities on these nets are not counted by PT PX during power 
analysis. 

In SDF-backannotated, forced-gate VCS simulations, our method of forcing sequential nodes 
also uses the same VPI routine as the zero delay simulation.  This VPI routine has the ability to 
assign internal nodes within leaf cells (essentially the Verilog library descriptions) a new value 
through a “force” (which would retain the forced value until it was removed or another “force” 
was applied), or through a “deposit” (which would retain the value deposited until a new value, 
be it through another “deposit”, “force” or through simulation was set).  The VPI routine also has 
options to toggle a net of a sequential cell so that values on the data inputs could be loaded into 
a cell at any specified time by toggling a clock net.  This approach of toggling the clock net was 
required to initialize the sequential UDP that was used to hold the state of a sequential element.   

The initialization strategy for the simulation was to force the appropriate value on the "force_d" 
net of the sequential and to toggle the sequential "force_c" net.  This loads all the sequential 
with their initial value.  Before every ensuing clock edge, the "force_d" forces are updated for 
any sequential which has changed value, and the clock edge propagates these values through 
the sequential cell.  By virtue of including the SDF file, the clock-to-Q delays for sequential cells 
can be observed.  Another advantage of forcing the sequential cell inputs instead of outputs is 
that the inputs can be forced before the clock network starts to propagate the new clock edge 
and well before this clock propagates through the clock network and arrives at the sequential 
cells.  

Since the focus is on obtaining a VCD file for power, toggling of notifier signals for timing 
violations during the forced-gate simulation is turned off through the +no_notifier switch.  
Otherwise, there would be X values on the outputs of sequential cells that violate timing 
constraints. 

 
PHYSICAL VS. SIMULATION GLITCH 

When one runs a gate-level simulation with backannotated delays, small glitch pulses can be 
created due to the fact that signals now do not all change at the same time.  The VCS simulator 
is able to propagate glitches throughout the gate level logic without regard to the width of these 
glitches.  However, in a physical inverter this is not the case.  In a SPICE simulation, delay is 
measured from the input at 50% to the output at 50%, and signals have a finite rise/fall transition 
time.  A delay measurement assumes the input continues its rise/fall during the switching event 
as then stays at the appropriate power/ground rail.  If the input node switches again (i.e. 
glitches) before the output has settled at its final power/ground rail, the inverter output switching 
will be affected.  If the glitch is small enough, the output will never completely transition to the 
appropriate power/ground rail and the glitch will not propagate.  Based on various SPICE 
simulations, we have come up with the approximation that a glitch will not physically propagate 
through a standard cell unless that glitch is 1.5 times the value of a simple inverter delay.  
Hence, to give a good approximation of the real “glitch” generated by a gate-level 
implementation, we need to remove the small non-physical glitch pulses from the VCS 
simulation. 

Three strategies were explored to filter glitches from VCS simulations: 

1. VCS percentage delay-based filtering through pulse controls, 
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2. Pulse filtering by post-processing the VCD to remove signal pulses of less than the given 
width, and 

3. Pulse filtering using PATHPULSE statements in SDF file 

To use VCS percentage delay-based filtering, transport delays along with pulse control switches 
(+pulse_r and +pulse_e switches) were employed.  This filtering strategy was easy to apply as 
it only required users to specify VCS options to enable it.  However, this strategy did not work 
appropriately as it did not support absolute delay values.  In the physical circuit, pulse filtering is 
a function of the delay of each inversion stage of the circuit, not of the full circuit delay. For 
multiple stage cells (such as buffers), this VCS option incorrectly sets the filtering delay based 
on the whole delay of the cell rather than just the inversion delay in the cell.  Also, in some 
cases, we want to filter out glitches that are greater than the delay of the cells (for example 1.5 
times the delay of a simple inverter), and this method did not support filtering of delays greater 
than the cell delay. 

The use of the PATHPULSE statements in Verilog and SDF files allow the specification, on a per 
cell instance basis, of rejection and error limits, which are the same as the pulse control limits 
used in VCS, but in this case, absolute values of rejection and error limits can also be specified.  
For this approach, one has to make sure that token PATHPULSE statements are included in the 
Verilog libraries, and the SDF file must be post-processed to include PATHPULSE statements for 
each leaf cell.  For this method of filtering, we used a rejection limit and an error limit of 
approximately 1.5 times the standard delay we saw for a single inversion cell.   

The use of PATHPULSE statements enabled the use of absolute delay values, but the PATHPULSE 
statement cannot be used to filter delays greater than the intrinsic cell delay.  Hence, the original 
issue of not being able to filter delays greater than the delay of the standard cell is still present.  
Our solution to this problem was to write a utility, we call filter_vcd [20], which is used to 
post-process VCD files.  This utility allows one to post-process a VCD file and remove any logic 
pulse less than the specified filter delay and write out the resulting new VCD file. 

Our final solution was an amalgam of the PATHPULSE and filter_vcd [20] methods.  The 
VCD file was obtained from the forced-gate SDF simulation with a fixed PATHPULSE value of 1.5 
times the delay of a single inversion cell.  For cells where this value was greater than the cell 
delay, the PATHPULSE value defaulted to the delay of the cell.  We then post-processed the VCD 
using our filter_vcd [20] utility to remove the glitches that could not be filtered during the 
simulation using the PATHPULSE property of the cell due to the fact than the glitches were 
greater than the delay of the associated cell.  We saw this problem mainly with simple single 
inversion cells.  However, most of the glitch filtering was performed by the PATHPULSE statement 
during the VCS simulation.  This is desirable because we want to reduce the probability of two 
glitches being logically combined into one longer single glitch which would not be removed by a 
VCD post-processing filter step. 

Through our glitch filtering experiments, we came to the conclusions that for our design-under-
test and power test patterns of interest, the glitch power observed was 5% of the total active 
power. 

One issue we found was a subtle bug in VCS where SDF backannotated delays were not being 
applied to certain cells due to calling the SDF backannotation Verilog task and the VPI to force 
node values at time t=0.  We worked around this issue by delaying the SDF backannotation to a 
later point in the simulation (t=5 for example).  We filed a STAR against Synopsys for this issue 
[18]. 

Another issue we found was an issue with PT PX and bussed ports.  In all cases, the VCD file 
was bit-blasted using Synopsys’ vcdpost utility before being used in PT PX.  This took care of 
an issue in PT PX that propagated incorrect toggles for bussed nets when different delays are 
seen on the bussed nets and the pins to which these nets connected.  PT PX does not expect 
delays on pins due to net SDF delays (when processing a VCD file from an SDF simulation).  
This issue has been reported to Synopsys. 
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Finally, an issue with PT PX losing toggles for the VCD file input was observed during a power 
analysis run of activity generated from a unit-delay GLS run (similar to an SDF-backannotated 
GLS run).  This issue has been reproduced in a small testcase, and was recently submitted to 
Synopsys [19]. 

 

Key Learnings:  

1) A full SDF simulation in a forced-gate flow is possible and gives good glitch power 
measurement.  The best approach is to force the inputs of sequential cells, so the forced-
gate flow mimics a conventional SDF backannotated simulation where clock signals 
naturally clock the data out of sequential elements (as opposed to just forcing the outputs of 
the sequential cells). 

2) Real glitch power is approximately 5% of total active power for the given cluster and pattern 

3) One needs to delay SDF backannotation in the forced-gate simulation so that SDF 
backannotation and the VPI to force nodes are not called at the same time.  This prevents 
valid non-zero SDF delays from being converted to zero delays 

4) It is best to use vcdpost to bit-blast busses so that correct toggles for bussed nets are 
propagated in PT PX.  A fix for this issue is targeted for PT PX D-2010.06-SP2. 

 

SUMMARY 
In the paper we described a method to analyze power using a force-gate simulation of a gate-
level netlist with full SDF back annotation.  This method showed that glitch power is under 5% of 
the total active power.  

Multiple STARs were filed against Synopsys for PT PX during the process of getting our forced-
gate simulation flow working.  When these STARs get resolved, the implementation of a forced-
gate flow should be substantially easier.  When running PT PX, SAIF files should be used 
instead of VCD or FSDB files. 

The use of VCS VPI interface routines is a very effective way to speed up the forced-gate 
simulation flow, and any new force-gate flow should take advantage of them.  The authors also 
proposed a partitioning of the forced-gate power estimation flow which would allow the pieces of 
the estimation flow to be more easily adapted to different technologies and vendors.   
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