
CovVise:
How We Stopped Throwing

Away Interesting Coverage Data

http://www.veripool.org/papers/CovVise_SNUGBos09_pres.pdf

September 21, 2009

Wilson Snyder
Cavium Networks

wsnyder@wsnyder.org

Robert Woods-Corwin
NVIDIA

covvise@rwoodsco.fastmail.fm

http://www.veripool.org/papers/CovVise_SNUGBos09_pres.pdf�

CovVise SiCortex

CovVise was created at and for SiCortex, Inc.

SiCortex formally closed in June 2009.

R.I.P.

CovVise
Agenda

• Tradition Dictates
– And Our Deviations

• CovVise Language Extensions
– SystemC Extensions
– SystemVerilog Extensions

• CovVise Post-Simulation
– CovVise Database
– CovVise Web Interface
– Metrigator

• Conclusions

• Q&A

CovVise Tradition: Verification Team Does It

• Traditionally,
– Only the Verification Team adds coverage

• Let the Designers also add coverage!
– They already add “line coverage”
– Just as they now add assertions, when writing RTL
– Fifo full, empty, unlikely cross products, bypasses

• Avoid duplication
– Some coverage is much easier when in RTL
– And some best left to the verification team (interfaces)

• Keep RTL simple… Later slides

CovVise Tradition: Coverage is Done Late

• Traditionally,
– Coverage is done near the end of the project
– Quantifies that little was missed

• Learn from “Test Driven Development”
– (Test Driven Development == Write tests before code)
– Write the “test” of verification code, I.E. the coverage, FIRST!
– Saves writing focused test when random hits unexpected bins
– Focuses effort on big missing coverage items

• So find important bugs faster
– Reduces chance that interesting coverage cases are forgotten
– Provides good metric for management

CovVise Tradition: All Hits Are Equal

• Traditionally,
– Per bin, all test hits against that bin contribute to a single sum

1*100 ≠ 100*1
• Which is better?

– 100 tests that hit a bin once?
– One test that hits a bin 100 times?
– Both count the same after aggregation some tools!

• Require some number of hits per test to count
this bin as “covered”
– Prevents initialization-only from covering bins
– Insures good random or strong focused coverage

CovVise Tradition: Only Passing Tests Count

• Traditionally,
– Coverage is only collected on passing tests
– Failures shouldn’t count towards coverage goals

• But learn from the Challenger disaster
– Didn’t graph failing cases, only successful ones

• If a bin is hit only by a failing test
– This bin is unlikely to be impossible
– This bin may indicate a bug is hiding behind it
– Conversely, fixing the failing test would improve coverage
– Focus effort on testing around this bin

“The Big Takeaway”

CovVise
Agenda

• Tradition Dictates
– And Our Deviations

• CovVise Language Extensions
– SystemC Extensions
– SystemVerilog Extensions

• CovVise Post-Simulation
– CovVise Database
– CovVise Web Interface
– Metrigator

• Conclusions

• Q&A

CovVise SystemC Extensions

• We extended SystemC to provide coverage ala
SystemVerilog, via the SystemPerl pre-processor

SC_MODULE(myModule) { // A SystemC Module
SP_COVERGROUP myGroup (
coverpoint myCoverPoint {
bins seven = 7; // single value
bins three_to_five = [3:5]; // range
bins members_of_enum = enum_type; // enum

};
);
...
void process() { // a method of the class
if (sampling_signal) { // when to sample

SP_COVER_SAMPLE(myGroup); // increment
}

http://www.veripool.org/systemperl�

CovVise SystemC Multidimensional Crosses

• We also allow crosses, illegals (asserts) and ignores

SC_MODULE(myModule) {
...
SP_COVERGROUP myGroup (
coverpoint first {
bins three_to_five = [3:5];

};
coverpoint second[8] = [0:7];
cross myCross {
rows = {first};
cols = {second};

};
illegal_bins_func = myCross_illegal()
ignore_bins_func = myCross_ignore()

);

CovVise SystemVerilog Extensions

• RTL is procedural
– Coverage should be too... Alas the language doesn’t allow this

• Allowed Designers to use $ucover_* macros, for example
always @* begin
if (...) begin
$ucover_clk(clock, label)

• Vpassert (part of Verilog-Perl) expands this to:
reg _temp;
label: cover property (@(posedge clock) _temp)
always @* begin
_tempsig = 0;
if (...) begin
_tempsig = 1;

• Works with SV formal tools, too

http://www.veripool.org/verilog-perl�

CovVise
Agenda

• Tradition Dictates
– And Our Deviations

• CovVise Language Extensions
– SystemC Extensions
– SystemVerilog Extensions

• CovVise Post-Simulation
– CovVise Database
– CovVise Web Interface
– Metrigator

• Conclusions

• Q&A

CovVise

OVERLOAD!

CovVise Database 1

• High demands: 100k tests * 100k bins
• 10B inserts per day

MySQL
Server

Apache
Web ServerSimulation

Servers
(400x)

Apache
Web Server
(and spare)

CovVise CovVise Database 2

• High demands: 100k tests * 100k bins
• 10B inserts per day
• Old data auto-pushed to archival database

MySQL
Server

Apache
Web Server

MySQL
Archive
Server

Memcached
Servers

(10x)

Simulation
Servers
(400x)

Apache
Web Server
(and spare)

CovVise CovVise Web Interface

• Users interface to CovVise data through the web

• “Simple enough even a VP can use it” ™ 

• Data is presented as hierarchy of coverage “pages”

• The interface begins with CovVise home page, which
list “ensembles” of test runs…

@

CovVise Web: Ensembles

! – Only-failures bins
W – Waived bins
71.1% - Low coverage
58.0% - High coverage

CovVise Web: Page Tree

CovVise Web: Files

CovVise Web: Binruns 1

Similar table is also
poped-up when mouse

hovers over any
coverage data.

CovVise Web: Binruns 2

Solves:
“I know I’ve seen this bin hit

some previous night”

CovVise Web: Binruns 3

What tests hit this bin, and
did they pass or fail?

CovVise Metrigator

• Metrigator: Our verification metrics database
– CovVise coverage (percent low coverage, ok coverage,

number of bins)
– Bug count (total, closed, per-component, by priority, etc)
– Bug closure rate (total, per-component, by priority, etc)
– Source code commits (size, number of edits)
– Verification test success (number of tests, failures)

• Spots Correlated Trends

• Appeases Management 

CovVise Metrigator Coverage Graph

CovVise
Agenda

• Tradition Dictates
– And Our Deviations

• CovVise Language Extensions
– SystemC Extensions
– SystemVerilog Extensions

• CovVise Post-Simulation
– CovVise Database
– CovVise Web Interface
– Metrigator

• Conclusions

• Q&A

CovVise Conclusions

• Verification Engineers got
– SystemC extended with SystemVerilog-ish coverage
– Data collected on failing tests, to easily detect interesting bins

• Designers got
– Coverage as part of normal RTL procedural statements
– Easy browsing of data

• Management got
– Early coverage for progress tracking and work reduction
– Pretty graphs

• If we were to do it again?
– Start coverage insertion even earlier
– [SiCortex,] Don’t run out of money 

CovVise

• The open source design tools are available at
http://www.veripool.org
– These slides + paper at http://www.veripool.org/papers/
– CovVise – Have you been paying attention?
– SystemPerl – /*AUTOs*/ for SystemC
– Verilog-Perl – Toolkit with Preprocessing, Renaming, etc
– Verilator – Compile SystemVerilog into SystemC

• Additional Tools
– Make::Cache - Object caching for faster compiles
– Schedule::Load – Load Balancing (ala LSF)
– Verilog-Mode for Emacs – /*AUTO…*/ Expansion
– Vregs – Extract register and class

declarations from documentation

Open Source

http://www.veripool.org/�
http://www.veripool.org/papers/�

	CovVise:�How We Stopped Throwing�Away Interesting Coverage Data��http://www.veripool.org/papers/CovVise_SNUGBos09_pres.pdf�
	SiCortex
	Agenda
	Tradition: Verification Team Does It
	Tradition: Coverage is Done Late
	Tradition: All Hits Are Equal
	Tradition: Only Passing Tests Count
	Agenda
	SystemC Extensions
	SystemC Multidimensional Crosses
	SystemVerilog Extensions
	Agenda
	CovVise Database 1
	CovVise Database 2
	CovVise Web Interface
	Web: Ensembles
	Web: Page Tree
	Web: Files
	Web: Binruns 1
	Web: Binruns 2
	Web: Binruns 3
	Metrigator
	Metrigator Coverage Graph
	Agenda
	Conclusions
	Open Source

