Functional Verification of SiCortex Multiprocessor
System-on-a-Chip

Oleg Petlin and Wilson Snyder
SiCortex Inc.
Three Clocktower Place, Suite 210
Maynard, MA 01721,USA

wsnyder@wsnyder.org

ABSTRACT

This paper discusses functional verification of the SiCor-
tex multiprocessor compute node. It is shown that the im-
plementation of reusable verification methodology, applica-
ble at the block- and chip-level, combined with a flexible
SystemC testbench design increases the level of verification
productivity. Also, it is demonstrated how verification pro-
ductivity can be improved by using open source verifica-
tion tools. The simulation approach described in the paper
provides a powerful mechanism for controlling the simula-
tion speed, accuracy, and overall verification cost. As a re-
sult, the SiCortex verification team was able to find more
bugs faster and to start co-verification in early stages of the
project development.

Categories and Subject Descriptors
B.6.3 [Design Aids|: Verification

General Terms

Design, Verification

Keywords

Functional verification, co-verification, Verilog, SystemC, C+—+,

modeling, coverage, regression testing, code reuse

1. INTRODUCTION

SiCortex cluster computer systems deliver high applica-
tion performance with less power dissipation and smaller
system sizes for low cost. Each system is composed of a
large number of six-way Symmetric Multiprocessor (SMP)
compute nodes that run the Linux operating system and
use the Message Passing Interface (MPI) for communication
between nodes. For example, the SC5832 system contains
972 compute nodes connected together in a degree-3 Kautz
graph and delivers peak performance of 5.8 teraflops in a
compact, low power cabinet [1].

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

DAC’07,June 4-8, 2007, San Diego, California, USA.

Copyright 2007 ACM 1-59593-057-4/05/0004 ...$5.00.

Figure 1 shows a block diagram of the SiCortex compute
node. The node is an SMP system-on-a-chip (SOC) with
coherent L1 and L2 caches, two DDR-2 memory interfaces,
a PCI Express (PCle) interface to external I/O devices, and
a programmable DMA interface to the fabric switch. The
node processors are based on a 64-bit MIPS core with 32KB
instruction and data caches. The design intent of the SiCor-
tex compute node is to provide for low main memory (L2
cache miss) and low communication latencies, high memory
bandwidth, low power (measured in FLOPS per watt), and
a complete Linux operating system support with kernel and
device drivers.

|
|
|
: Six 64-bit MIPS CPUs CPU CPU
|
|
| L1 Cache L1 Cache
|
| I
| PCI
| DMA Engine | Coherent L2 Cache [« Express
| Controller
|
| ! ! !
|
| DDR-2 DDR-2
| Fabric Switch Controller Controller
!] ¥
] Node
(R I 1 N O IS I .
Y
‘ DDR-2 DIMM ' ‘ DDR-2 DIMM ‘ External /O
From other _ __ To other
nodes nodes
Fabric Links

Figure 1: SiCortex Compute Node

The ultimate goal of functional verification is to prove that
the design intent of the device under verification (DUV) is
preserved in its implementation [2]. Thus, functional ver-
ification of the chip can be divided into two parts: design
verification and hardware/software co-verification. The ver-
ification challenge is driven by the following major factors:
high design complexity (198 million transistors); the pres-
ence of both the purchased design IPs and internally de-
veloped blocks; high device programmability; and Verilog
simulator speed and license limitations.

2. VERIFICATION APPROACH

2.1 \erification Models

The design intent is normally stated in the design spec-
ification. A design model is needed to capture the design
intent. In theory, there can be many implementations of
the same design intent. The verification team created pre-
dictor and checker models from the design specification to
provide for self-checking of the design and implementation
intent. The architecture team developed more refined Sys-
temC cycle-accurate High Level Models (HLMs) to capture
the target architecture implementation details. The imple-
mentation team wrote Verilog RTL models based on their
corresponding HLMs.

Intent
Verification

Untimed
Predictor Model

Y

Equivalence

y| Cycle-Accurate Checking
Lad

HLM

Implementation
Verification

> RTL Model

Figure 2: Verification Model Hierarchy

Figure 2 shows the verification model hierarchy that con-
sists of three levels: intent verification, equivalence check-
ing, and design implementation verification. The verifica-
tion team started with the development of verification plans
for the corresponding design blocks. The intent verification
was finished upon the completion of all verification tests and
the achievement of the functional coverage criteria. Then
the same set of tests were applied to the RTL model. The
coverage criteria in this case included both the functional
coverage and Verilog code coverage data. When either func-
tional or code coverage results were found unsatisfactory,
more tests were written. For a number of blocks, such as
the DMA engine and L2 cache, verification tests were run in
parallel against both their cycle-accurate HLMs and the cor-
responding Verilog RTL implementations to prove that the
HLM and RTL models were equivalent (equivalence check-
ing) and functionally correct.

2.2 Simulation Models

The SiCortex SOC was designed from a number of pur-
chased design IPs and custom designed blocks. All design
IPs were delivered as synthesizable Verilog RTL models,
whereas most of the SiCortex custom blocks had both Sys-
temC HLM and Verilog RTL implementations. In addition,
the 64-bit MIPS processor design was modelled using the
SimH instruction-accurate behavioral simulator [3].

All synthesizable Verilog RTL models can be converted
into fast C++/SystemC cycle-accurate models using Veri-
lator [4]. Verilated RTL models are simulated license-free
using the OSCI SystemC simulator providing more simula-
tion cycles at no cost. Figure 3 shows the integration of var-
ious block-level simulation models intended to meet speed,
accuracy, and simulation cost requirements.

SystemC Wrapper |

|
| | BFM (SystemC Model)'—)\ |

|
| SystemC
SystemC | | Verilated RTL Model '—P Output
Input | |

H Signal
Signal
Interface | | HLM (SystemC Model)l—)

| _Interface
| | Behavioral Model

| yState

: | Verilog RTL Model /

Figure 3: Integration of the Simulation Models

There are two chip simulation models: the SystemC chip
model and Verilog package wrapper model. The later in-
stantiates the RTL and gate-level Verilog chip models. Note
that both wrappers are instantiated in the same SystemC
testbench. In the SystemC chip model, all connectivity be-
tween the subchip blocks are described in SystemC and each
C/C++, SystemC, or Verilog RTL block model is instanti-
ated in its SystemC wrapper (see Figure 3). In addition,
some blocks can be instantiated as BFMs under the control
of verification test drivers that supply stimuli to and collect
responses from the adjacent blocks under verification. The
SOC simulation configuration, which specifies how each sub-
chip block is modelled, is described in a Perl hash structure
that instructs the build script how to compile the SOC sim-
ulation model. There are several important advantages of
this simulation approach:

e It provides great flexibility for the verification of in-
dividual blocks and different combinations of subchip
blocks under one SystemC chip wrapper;

e License-free simulations can be achieved by choosing
any combination of Verilated RTL models, SystemC
HLMs, behavioral models, and BFMs.

2.3 Testbench Design

The main goals of the testbench design are to reduce the
test development cycle, facilitate the process of debugging,
increase verification code reusability, and increase the level
of functional coverage. The testbench implementation is
based on a layered approach where each layer provides a set
of services depending on the test abstraction level. There
are three basic testbench layers:

e Test specification and control layer (test scenario, cov-
erage, and test completion managers);

e Intent verification support layer (traffic manager and
scoreboard);

e Design implementation verification layer (interface BFMs,

predictors/checkers, and monitors).

2.4 Test Writing Methodology

Every test is described as a C++ class that inherits the
ScxTest base class as follows:

class myTest : public ScxTest {
virtual void init(); ///< init method
virtual void spawned(); ///< spawned method
virtual void final(); ///< test final method
3

There are three virtual methods that the test writer needs
to define: init(), spawned(), and final(). The init()
method is needed to reset the DUV with other verification
elements. The spawned() method describes how to exe-
cute the test. Both the init() and spawned() methods are
spawned dynamically by the SystemC sc_spawn() method.
The launching of a test includes the instantiation of the test
class and a subsequent call to the test base run() method
shown below:

void ScxTest::spawnTop() {
init () ;
spawned () ;

}

void ScxTest::run() {
sc_spawn_options opts;
sc_spawn(sc_bind (&ScxTest: :spawnTop, this),

"spawnTop", &opts);

while (!finished()) poll();
final();

}

After spawning the spawned () method, the test enters the
local while loop. Communication between a test and its
BFMs is implemented via test driver methods spawned by

the test spawned () method. The loop exits when the finished ()

method evaluates the test completion criteria as true. Fi-
nally, the final () method is called to collect test statistical
data.

3. VERIFICATION PRODUCTIVITY

In principal, productivity can be measured by the time
spent on a specific task and the costs associated with its
execution. The productivity of hardware verification de-
pends on reusability of the verification methodology and
code, the use of automation tools, regression testing support,
co-verification support, and control over the use of licenses
[5]- Since the ultimate goal of verification is to find bugs in
the most efficient way, a great deal of time was devoted to
tools, code reuse, and regression testing support.

3.1 \Verification Tools

3.1.1 Languages, libraries, and simulators

C++ standard template library (STL) was used through-
out the project to facilitate the development of C++ ver-
ification code [6]. Also, the constraint and weighted ran-
domization support classes and techniques provided by the
SystemC verification (SCV) library were widely used [7].
To increase the verification abstraction level while handling

3.1.2 Open source productivity tools

During the course of verification, Vregs and SystemPerl
open source verification productivity tools were used. The
Vregs tool creates Verilog headers, C++ headers, C++ classes,
and verification tests for all chip status control registers
(CSRs) from the specification [8]. As a result, CSR spec-
ifications and verification code are always up-to-date. Sys-
temPerl is a preprocessor that translates simplified SystemC
like code into standard C++/SystemC code for compilation
[4]- SystemPerl provides a rich set of macros, acting as direc-
tives, to generate correct C++/SystemC files. SystemPerl
saves close to 40% of SystemC lines, resulting in fewer typos
and compile errors.

3.2 Code Reuse

Code reuse in the SiCortex verification environment was
achieved primarily by developing a unified verification method-
ology based on a set of industry standard languages and
libraries.

3.2.1 Encapsulation, inheritance, and polymorphism

C++ provides powerful capabilities, such as encapsula-
tion, inheritance, and polymorphism, for improving code
structure and reusability [6]. From the design perspective,
a polymorphic base class is a base class that is designed
for use by other objects. The process of creating tests re-
quires the development of base classes with service methods
designed to handle the DUV specific control and data ma-
nipulation functions. Every new test can simply inherit or
encapsulate all necessary base classes to handle low level op-
erations, whereas the test writer focuses on writing new test
scenarios at a higher abstraction level. Thus, consistency,
debugability, and reusability of the verification code can be
maintained.

3.2.2 \Verification infrastructure reuse

The real value of the verification infrastructure is in the
utilization of its support layer functions and testbench el-
ements during the development and debugging of tests [5].
All verification tests, including the testbench components,
such as BFMs, monitors, checkers, and predictors, are reused
to verify both the SystemC and Verilog chip models. Each
test was designed using the DUV specific and common (SCV
library, STL, etc.) C++ libraries.

3.2.3 Recycling subchip tests

High code reusabilty was achieved during the chip-level
verification effort by reusing the tests originally written to
verify subchip configurations, such as PCle, DMA, and mem-
ory system. Below is a simplified example of the ChipTest
chip-level test class derived from the ScxTest base class:

class ChipTest : public ScxTest {
struct PcieBaseTest* pciTest;
struct DmaBaseTest* dmaTest;
struct MemBaseTest* memTest;

different types of data transactions, the OSCI Transaction
Level Modeling (TLM) library was used in the development
of BFMs and monitors. The standard OSCI SystemC sim-
ulator was used to simulate SystemC chip models and de-
bug tests. In addition, Cadence’s Incisive Unified mixed-
language NCSIM simulator was used to simulate Verilog and
SystemC models. }

virtual void pciSpawn() {pciTest->spawned();}
virtual void dmaSpawn() {dmaTest->spawned();}
virtual void memSpawn() {memTest->spawned();}
virtual void init();

virtual void spawned();

virtual void final();

void ChipTest::spawned() {
SC_FORK
sc_spawn(sc_bind (&ChipTest: :pciSpawn, this),
"pcitest", &opts),
sc_spawn(sc_bind (&ChipTest: :dmaSpawn, this),
"dmatest", &opts),
sc_spawn(sc_bind (&ChipTest: :memSpawn, this),
"memtest", &opts),
SC_JOIN
}

Note that the ChipTest spawned() method spawns the indi-
vidual test spawned () methods using the SystemC fork-join
construct.

3.3 Regression Testing

The value of regression testing for finding bugs is often
overlooked. Random testing, where input stimuli, test pa-
rameters, and test scenarios are generated pseudo-randomly
(depending on the random seed), greatly improves the veri-
fication quality by generating interesting verification scenar-
ios. Though the majority of regression failures were not real
design bugs, close to 10% of those failures can be described
as either design limitations needed to be documented or in-
teresting, hard-to-imagine test scenarios that had to be fixed
in the design.

4. CO-VERIFICATION: BOOTING LINUX

The ability of the chip to boot Linux is the most im-
portant functional requirement. The software team started
the debugging of the Linux kernel using the SimH behav-
ioral standalone simulator. The total number of instructions
needed to run full SMP to the user mode prompt equals ap-
proximately 16 million MIPS instructions. The Linux debug
process was split into the following sequence of steps:

1. Fast behavioral simulations in the SimH environment.
It takes 50 seconds to boot Linux.

2. Speed-optimized, mixed-mode, and license-free Sys-
temC simulations (behavioral CPU models, SystemC
HLMs, and Verilated RTL). The total Linux boot time
is 3 hours and 27 minutes.

3. License-free SystemC simulations (verilated RTL). The
Linux boot time is 14 hours and 17 minutes.

4. Verilog RTL simulations using NCSIM. The Linux boot
time is 28 hours.

5. Verilog gate-level simulations using NCSIM. Booting
Linux requires almost 100 hours.

5. VERIFICATION STATISTICS

The overall number of block, subchip and chip-level tests
totalled almost 20,000. Every nightly regression test suite
included approximately 5,000 randomly selected tests (both
directed and random tests). On average, only 20% of the
nightly regression simulation runs require NCSIM licenses.

The total number of critical design bugs totaled close to
1,300. Table 1 shows the distribution of critical bugs with
their percentage of the total number of bugs found in HLM
and RTL models of the custom built blocks. As a result,
more than 80% of all bugs were found in the HLM block

18]

| Block | HLM | RTL | Total |
L2 Cache 304 (90%) | 34 (10%) 338
DMA Engine | 217 (82%) | 47 (18%) | 264
FSW Switch | 158 (79%) | 41 (21%) 199
PCle-PMI 159 (84%) | 30 (16%) 189
CHIP 3 (21%) 11 (79%) 14

Table 1: HLM and RTL Bug Distribution

models and only 20% in the corresponding RTL models. The
distribution of bugs is reversed at the chip-level: almost 80%
of the chip-level bugs were found in the RTL chip model. A
higher percentage of bugs in the RTL chip model can be ex-
plained by two reasons. Firstly, all block and subchip-level
simulations are performed on the same SystemC chip model,
and, secondly, the RTL chip model contains additional cir-
cuitry, such as DFT logic, PLLs, and PHYs.

6. CONCLUSIONS

A set of fast behavioral and cycle-accurate models were
developed to enable the architectural exploration, perfor-
mance analysis, and software debug in early stages of the
development of the SiCortex compute node architecture.
Besides verifying the SOC design, it was vitally important
to demonstrate that the Linux operating system and de-
vice drivers could operate seamlessly on the chip before the
tapeout. The SiCortex simulation strategy provided for a
higher level of control over the simulation speed, accuracy,
and overall verification cost. The verification strategy and
testbench design increased reusability of verification code.
Open source tools, such as as Vregs, SystemPerl, and Ver-
ilator, proved to be valuable productivity tools in helping
the verification team to develop, simulate, and regress tests
license-free. As a result, engineers were able to run more
tests and find more bugs sooner.

7. REFERENCES

[1] M. Reilly, L. Stewart, J. Leonard, D. Gingold,
"SiCortex Technical Summary”, 2006. (available at
http://www.sicortex.com/prod _ white.shtml)

[2] A. Piziali, "Functional Verification Coverage

Measurement and Analysis”, Kluwer Academic

Publishers, 2004.

R. Supnik, "Writing a Simulator for the SimH System",

2006. (available at http://simh.trailing-edge.com)

W. Snyder, "Verilator and SystemPer]l Environment”,

NASCUG, 2004.

O. Petlin, A. Genusov, L. Wakeman, "Methodology and

Code Reuse in the Verification of Telecommunication

SOCs”, 13th IEEE ASIC/SOC Conf., pp. 187-191, 2000.

B. Stroustrup, "The C++ Programming Language”,

Addison-Wesley Professional, 2000.

L. Singh, L. Drucker, N. Khan, "Advanced Verification

Techniques”, Springer, 2005.

W. Snyder, 7505 Registers or Bust”, Synopsys User’s Group,

SNUG Boston 2001.

13l
4]
[5]

[6]
7]

