
Functional Verification of SiCortex Multiprocessor
System-on-a-Chip

Oleg Petlin and Wilson Snyder
SiCortex Inc.

Three Clocktower Place, Suite 210
Maynard, MA 01721,USA

wsnyder@wsnyder.org

ABSTRACTThis paper dis
usses fun
tional veri�
ation of the SiCor-tex multipro
essor
ompute node. It is shown that the im-plementation of reusable veri�
ation methodology, appli
a-ble at the blo
k- and
hip-level,
ombined with a �exibleSystemC testben
h design in
reases the level of veri�
ationprodu
tivity. Also, it is demonstrated how veri�
ation pro-du
tivity
an be improved by using open sour
e veri�
a-tion tools. The simulation approa
h des
ribed in the paperprovides a powerful me
hanism for
ontrolling the simula-tion speed, a

ura
y, and overall veri�
ation
ost. As a re-sult, the SiCortex veri�
ation team was able to �nd morebugs faster and to start
o-veri�
ation in early stages of theproje
t development.
Categories and Subject DescriptorsB.6.3 [Design Aids℄: Veri�
ation
General TermsDesign, Veri�
ation
KeywordsFun
tional veri�
ation,
o-veri�
ation, Verilog, SystemC, C++,modeling,
overage, regression testing,
ode reuse
1. INTRODUCTIONSiCortex
luster
omputer systems deliver high appli
a-tion performan
e with less power dissipation and smallersystem sizes for low
ost. Ea
h system is
omposed of alarge number of six-way Symmetri
 Multipro
essor (SMP)
ompute nodes that run the Linux operating system anduse the Message Passing Interfa
e (MPI) for
ommuni
ationbetween nodes. For example, the SC5832 system
ontains972
ompute nodes
onne
ted together in a degree-3 Kautzgraph and delivers peak performan
e of 5.8 tera�ops in a
ompa
t, low power
abinet [1℄.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC’07,June 4–8, 2007, San Diego, California, USA.
Copyright 2007 ACM 1-59593-057-4/05/0004 ...$5.00.

Figure 1 shows a blo
k diagram of the SiCortex
omputenode. The node is an SMP system-on-a-
hip (SOC) with
oherent L1 and L2
a
hes, two DDR-2 memory interfa
es,a PCI Express (PCIe) interfa
e to external I/O devi
es, anda programmable DMA interfa
e to the fabri
 swit
h. Thenode pro
essors are based on a 64-bit MIPS
ore with 32KBinstru
tion and data
a
hes. The design intent of the SiCor-tex
ompute node is to provide for low main memory (L2
a
he miss) and low
ommuni
ation laten
ies, high memorybandwidth, low power (measured in FLOPS per watt), anda
omplete Linux operating system support with kernel anddevi
e drivers.

Figure 1: SiCortex Compute NodeThe ultimate goal of fun
tional veri�
ation is to prove thatthe design intent of the devi
e under veri�
ation (DUV) ispreserved in its implementation [2℄. Thus, fun
tional ver-i�
ation of the
hip
an be divided into two parts: designveri�
ation and hardware/software
o-veri�
ation. The ver-i�
ation
hallenge is driven by the following major fa
tors:high design
omplexity (198 million transistors); the pres-en
e of both the pur
hased design IPs and internally de-veloped blo
ks; high devi
e programmability; and Verilogsimulator speed and li
ense limitations.
2. VERIFICATION APPROACH

2.1 Verification ModelsThe design intent is normally stated in the design spe
-i�
ation. A design model is needed to
apture the designintent. In theory, there
an be many implementations ofthe same design intent. The veri�
ation team
reated pre-di
tor and
he
ker models from the design spe
i�
ation toprovide for self-
he
king of the design and implementationintent. The ar
hite
ture team developed more re�ned Sys-temC
y
le-a

urate High Level Models (HLMs) to
apturethe target ar
hite
ture implementation details. The imple-mentation team wrote Verilog RTL models based on their
orresponding HLMs.

Figure 2: Veri�
ation Model Hierar
hyFigure 2 shows the veri�
ation model hierar
hy that
on-sists of three levels: intent veri�
ation, equivalen
e
he
k-ing, and design implementation veri�
ation. The veri�
a-tion team started with the development of veri�
ation plansfor the
orresponding design blo
ks. The intent veri�
ationwas �nished upon the
ompletion of all veri�
ation tests andthe a
hievement of the fun
tional
overage
riteria. Thenthe same set of tests were applied to the RTL model. The
overage
riteria in this
ase in
luded both the fun
tional
overage and Verilog
ode
overage data. When either fun
-tional or
ode
overage results were found unsatisfa
tory,more tests were written. For a number of blo
ks, su
h asthe DMA engine and L2
a
he, veri�
ation tests were run inparallel against both their
y
le-a

urate HLMs and the
or-responding Verilog RTL implementations to prove that theHLM and RTL models were equivalent (equivalen
e
he
k-ing) and fun
tionally
orre
t.
2.2 Simulation ModelsThe SiCortex SOC was designed from a number of pur-
hased design IPs and
ustom designed blo
ks. All designIPs were delivered as synthesizable Verilog RTL models,whereas most of the SiCortex
ustom blo
ks had both Sys-temC HLM and Verilog RTL implementations. In addition,the 64-bit MIPS pro
essor design was modelled using theSimH instru
tion-a

urate behavioral simulator [3℄.All synthesizable Verilog RTL models
an be
onvertedinto fast C++/SystemC
y
le-a

urate models using Veri-lator [4℄. Verilated RTL models are simulated li
ense-freeusing the OSCI SystemC simulator providing more simula-tion
y
les at no
ost. Figure 3 shows the integration of var-ious blo
k-level simulation models intended to meet speed,a

ura
y, and simulation
ost requirements.

Figure 3: Integration of the Simulation ModelsThere are two
hip simulation models: the SystemC
hipmodel and Verilog pa
kage wrapper model. The later in-stantiates the RTL and gate-level Verilog
hip models. Notethat both wrappers are instantiated in the same SystemCtestben
h. In the SystemC
hip model, all
onne
tivity be-tween the sub
hip blo
ks are des
ribed in SystemC and ea
hC/C++, SystemC, or Verilog RTL blo
k model is instanti-ated in its SystemC wrapper (see Figure 3). In addition,some blo
ks
an be instantiated as BFMs under the
ontrolof veri�
ation test drivers that supply stimuli to and
olle
tresponses from the adja
ent blo
ks under veri�
ation. TheSOC simulation
on�guration, whi
h spe
i�es how ea
h sub-
hip blo
k is modelled, is des
ribed in a Perl hash stru
turethat instru
ts the build s
ript how to
ompile the SOC sim-ulation model. There are several important advantages ofthis simulation approa
h:
• It provides great �exibility for the veri�
ation of in-dividual blo
ks and di�erent
ombinations of sub
hipblo
ks under one SystemC
hip wrapper;
• Li
ense-free simulations
an be a
hieved by
hoosingany
ombination of Verilated RTL models, SystemCHLMs, behavioral models, and BFMs.

2.3 Testbench DesignThe main goals of the testben
h design are to redu
e thetest development
y
le, fa
ilitate the pro
ess of debugging,in
rease veri�
ation
ode reusability, and in
rease the levelof fun
tional
overage. The testben
h implementation isbased on a layered approa
h where ea
h layer provides a setof servi
es depending on the test abstra
tion level. Thereare three basi
 testben
h layers:
• Test spe
i�
ation and
ontrol layer (test s
enario,
ov-erage, and test
ompletion managers);
• Intent veri�
ation support layer (tra�
 manager ands
oreboard);
• Design implementation veri�
ation layer (interfa
e BFMs,predi
tors/
he
kers, and monitors).

2.4 Test Writing MethodologyEvery test is des
ribed as a C++
lass that inherits theS
xTest base
lass as follows:

lass myTest : publi
 S
xTest {virtual void init(); ///< init methodvirtual void spawned(); ///< spawned methodvirtual void final(); ///< test final method};There are three virtual methods that the test writer needsto de�ne: init(), spawned(), and final(). The init()method is needed to reset the DUV with other veri�
ationelements. The spawned() method des
ribes how to exe-
ute the test. Both the init() and spawned() methods arespawned dynami
ally by the SystemC s
_spawn() method.The laun
hing of a test in
ludes the instantiation of the test
lass and a subsequent
all to the test base run() methodshown below:void S
xTest::spawnTop() {init();spawned();}void S
xTest::run() {s
_spawn_options opts;s
_spawn(s
_bind(&S
xTest::spawnTop, this),"spawnTop", &opts);while (!finished()) poll();final();}After spawning the spawned() method, the test enters thelo
al while loop. Communi
ation between a test and itsBFMs is implemented via test driver methods spawned bythe test spawned()method. The loop exits when the finished()method evaluates the test
ompletion
riteria as true. Fi-nally, the final() method is
alled to
olle
t test statisti
aldata.
3. VERIFICATION PRODUCTIVITYIn prin
ipal, produ
tivity
an be measured by the timespent on a spe
i�
 task and the
osts asso
iated with itsexe
ution. The produ
tivity of hardware veri�
ation de-pends on reusability of the veri�
ation methodology and
ode, the use of automation tools, regression testing support,
o-veri�
ation support, and
ontrol over the use of li
enses[5℄. Sin
e the ultimate goal of veri�
ation is to �nd bugs inthe most e�
ient way, a great deal of time was devoted totools,
ode reuse, and regression testing support.
3.1 Verification Tools

3.1.1 Languages, libraries, and simulatorsC++ standard template library (STL) was used through-out the proje
t to fa
ilitate the development of C++ ver-i�
ation
ode [6℄. Also, the
onstraint and weighted ran-domization support
lasses and te
hniques provided by theSystemC veri�
ation (SCV) library were widely used [7℄.To in
rease the veri�
ation abstra
tion level while handlingdi�erent types of data transa
tions, the OSCI Transa
tionLevel Modeling (TLM) library was used in the developmentof BFMs and monitors. The standard OSCI SystemC sim-ulator was used to simulate SystemC
hip models and de-bug tests. In addition, Caden
e's In
isive Uni�ed mixed-language NCSIM simulator was used to simulate Verilog andSystemC models.

3.1.2 Open source productivity toolsDuring the
ourse of veri�
ation, Vregs and SystemPerlopen sour
e veri�
ation produ
tivity tools were used. TheVregs tool
reates Verilog headers, C++ headers, C++
lasses,and veri�
ation tests for all
hip status
ontrol registers(CSRs) from the spe
i�
ation [8℄. As a result, CSR spe
-i�
ations and veri�
ation
ode are always up-to-date. Sys-temPerl is a prepro
essor that translates simpli�ed SystemClike
ode into standard C++/SystemC
ode for
ompilation[4℄. SystemPerl provides a ri
h set of ma
ros, a
ting as dire
-tives, to generate
orre
t C++/SystemC �les. SystemPerlsaves
lose to 40% of SystemC lines, resulting in fewer typosand
ompile errors.
3.2 Code ReuseCode reuse in the SiCortex veri�
ation environment wasa
hieved primarily by developing a uni�ed veri�
ation method-ology based on a set of industry standard languages andlibraries.
3.2.1 Encapsulation, inheritance, and polymorphismC++ provides powerful
apabilities, su
h as en
apsula-tion, inheritan
e, and polymorphism, for improving
odestru
ture and reusability [6℄. From the design perspe
tive,a polymorphi
 base
lass is a base
lass that is designedfor use by other obje
ts. The pro
ess of
reating tests re-quires the development of base
lasses with servi
e methodsdesigned to handle the DUV spe
i�

ontrol and data ma-nipulation fun
tions. Every new test
an simply inherit oren
apsulate all ne
essary base
lasses to handle low level op-erations, whereas the test writer fo
uses on writing new tests
enarios at a higher abstra
tion level. Thus,
onsisten
y,debugability, and reusability of the veri�
ation
ode
an bemaintained.
3.2.2 Verification infrastructure reuseThe real value of the veri�
ation infrastru
ture is in theutilization of its support layer fun
tions and testben
h el-ements during the development and debugging of tests [5℄.All veri�
ation tests, in
luding the testben
h
omponents,su
h as BFMs, monitors,
he
kers, and predi
tors, are reusedto verify both the SystemC and Verilog
hip models. Ea
htest was designed using the DUV spe
i�
 and
ommon (SCVlibrary, STL, et
.) C++ libraries.
3.2.3 Recycling subchip testsHigh
ode reusabilty was a
hieved during the
hip-levelveri�
ation e�ort by reusing the tests originally written toverify sub
hip
on�gurations, su
h as PCIe, DMA, and mem-ory system. Below is a simpli�ed example of the ChipTest
hip-level test
lass derived from the S
xTest base
lass:
lass ChipTest : publi
 S
xTest {stru
t P
ieBaseTest* p
iTest;stru
t DmaBaseTest* dmaTest;stru
t MemBaseTest* memTest;virtual void p
iSpawn() {p
iTest->spawned();}virtual void dmaSpawn() {dmaTest->spawned();}virtual void memSpawn() {memTest->spawned();}virtual void init();virtual void spawned();virtual void final();}

void ChipTest::spawned() {SC_FORKs
_spawn(s
_bind(&ChipTest::p
iSpawn, this),"p
itest", &opts),s
_spawn(s
_bind(&ChipTest::dmaSpawn, this),"dmatest", &opts),s
_spawn(s
_bind(&ChipTest::memSpawn, this),"memtest", &opts),SC_JOIN}Note that the ChipTest spawned() method spawns the indi-vidual test spawned() methods using the SystemC fork-join
onstru
t.
3.3 Regression TestingThe value of regression testing for �nding bugs is oftenoverlooked. Random testing, where input stimuli, test pa-rameters, and test s
enarios are generated pseudo-randomly(depending on the random seed), greatly improves the veri-�
ation quality by generating interesting veri�
ation s
enar-ios. Though the majority of regression failures were not realdesign bugs,
lose to 10% of those failures
an be des
ribedas either design limitations needed to be do
umented or in-teresting, hard-to-imagine test s
enarios that had to be �xedin the design.
4. CO-VERIFICATION: BOOTING LINUXThe ability of the
hip to boot Linux is the most im-portant fun
tional requirement. The software team startedthe debugging of the Linux kernel using the SimH behav-ioral standalone simulator. The total number of instru
tionsneeded to run full SMP to the user mode prompt equals ap-proximately 16 million MIPS instru
tions. The Linux debugpro
ess was split into the following sequen
e of steps:1. Fast behavioral simulations in the SimH environment.It takes 50 se
onds to boot Linux.2. Speed-optimized, mixed-mode, and li
ense-free Sys-temC simulations (behavioral CPU models, SystemCHLMs, and Verilated RTL). The total Linux boot timeis 3 hours and 27 minutes.3. Li
ense-free SystemC simulations (verilated RTL). TheLinux boot time is 14 hours and 17 minutes.4. Verilog RTL simulations using NCSIM. The Linux boottime is 28 hours.5. Verilog gate-level simulations using NCSIM. BootingLinux requires almost 100 hours.
5. VERIFICATION STATISTICSThe overall number of blo
k, sub
hip and
hip-level teststotalled almost 20,000. Every nightly regression test suitein
luded approximately 5,000 randomly sele
ted tests (bothdire
ted and random tests). On average, only 20% of thenightly regression simulation runs require NCSIM li
enses.The total number of
riti
al design bugs totaled
lose to1,300. Table 1 shows the distribution of
riti
al bugs withtheir per
entage of the total number of bugs found in HLMand RTL models of the
ustom built blo
ks. As a result,more than 80% of all bugs were found in the HLM blo
k

Blo
k HLM RTL TotalL2 Ca
he 304 (90%) 34 (10%) 338DMA Engine 217 (82%) 47 (18%) 264FSW Swit
h 158 (79%) 41 (21%) 199PCIe-PMI 159 (84%) 30 (16%) 189CHIP 3 (21%) 11 (79%) 14Table 1: HLM and RTL Bug Distributionmodels and only 20% in the
orresponding RTL models. Thedistribution of bugs is reversed at the
hip-level: almost 80%of the
hip-level bugs were found in the RTL
hip model. Ahigher per
entage of bugs in the RTL
hip model
an be ex-plained by two reasons. Firstly, all blo
k and sub
hip-levelsimulations are performed on the same SystemC
hip model,and, se
ondly, the RTL
hip model
ontains additional
ir-
uitry, su
h as DFT logi
, PLLs, and PHYs.
6. CONCLUSIONSA set of fast behavioral and
y
le-a

urate models weredeveloped to enable the ar
hite
tural exploration, perfor-man
e analysis, and software debug in early stages of thedevelopment of the SiCortex
ompute node ar
hite
ture.Besides verifying the SOC design, it was vitally importantto demonstrate that the Linux operating system and de-vi
e drivers
ould operate seamlessly on the
hip before thetapeout. The SiCortex simulation strategy provided for ahigher level of
ontrol over the simulation speed, a

ura
y,and overall veri�
ation
ost. The veri�
ation strategy andtestben
h design in
reased reusability of veri�
ation
ode.Open sour
e tools, su
h as as Vregs, SystemPerl, and Ver-ilator, proved to be valuable produ
tivity tools in helpingthe veri�
ation team to develop, simulate, and regress testsli
ense-free. As a result, engineers were able to run moretests and �nd more bugs sooner.
7. REFERENCES[1℄ M. Reilly, L. Stewart, J. Leonard, D. Gingold,�SiCortex Te
hni
al Summary�, 2006. (available athttp://www.si
ortex.
om/prod_white.shtml)[2℄ A. Piziali, �Fun
tional Veri�
ation CoverageMeasurement and Analysis�, Kluwer A
ademi
Publishers, 2004.[3℄ R. Supnik, "Writing a Simulator for the SimH System",2006. (available at http://simh.trailing-edge.
om)[4℄ W. Snyder, �Verilator and SystemPerl Environment�,NASCUG, 2004.[5℄ O. Petlin, A. Genusov, L. Wakeman, �Methodology andCode Reuse in the Veri�
ation of Tele
ommuni
ationSOCs�, 13th IEEE ASIC/SOC Conf., pp. 187-191, 2000.[6℄ B. Stroustrup, �The C++ Programming Language�,Addison-Wesley Professional, 2000.[7℄ L. Singh, L. Dru
ker, N. Khan, �Advan
ed Veri�
ationTe
hniques�, Springer, 2005.[8℄ W. Snyder, �505 Registers or Bust�, Synopsys User's Group,SNUG Boston 2001.

