SiCortex

Functional Verification of the SiCortex
Multiprocessor System-on-a-Chip

s
5
o
-
&
o
e

Oleg Petlin, Wilson Snyder
wsnyder@wsnyder.org

June 7, 2007

Agenda

What we’ve built
Verification challenges
Verification productivity
Substitution modelling
Co-verification
Verification statistics
Conclusions

Q&A

What We’'ve Built

o Complete computer system
— Rethought how a cluster should be built

e Custom processor chip
— Reduced power
— Maximized memory performance
— Integrated high performance interconnect

o Software
— Open Source: Linux, GNU, and MPI

Our Product: SC5832

5832
7776
972

2916
500

270

18

Gigaflops
Gigabytes DDR memory
6-core 64-bit nodes

2 GByte/s fabric links
GByte/s bisection bandwidth

GByte/s PCI-E bandwidth

KW
Cabinet

There’s a small version too...

Verification Challenges

High design complexity
— 1.2 million lines of RTL -> 198 million transistors

Both purchased IP and internal developments
High programmabillity - 6 CPUs and DMA
Co-verification of Linux kernel and device drivers

Control the overall verification cost
— Verilog simulator speed and license limitations
— How to find more bugs for less w/o compromising the quality of

verification?
0
@v S

— Project deadlines

Verification Productivity

« Verification Tools
— Languages, libraries, and simulators Z
x

« C++, STL

« SystemC verification library and TLM
« OSCI SystemC

« Cadence Incisive

%)

— Open source productivity tools (http://www.veripool.com)
* Vregs (Register documentation -> headers & verification code)
» Verilog-Mode (saves writing 30% of the Verilog lines !)
» SystemPerl (saves writing 40% of SystemC lines !)
» Verilator (Verilog RTL -> C++/SystemC cycle-accurate model)

http://www.veripool.com/

Verilator and Incisive

Verilator + OSC Incisive

Full SystemC Full SystemC

Synthesizable Verilog-2005 Fully Verilog-2005 compliant

C++ Interface PLI/VPI compliant interface

Two-State Four-State (0,1,X,Z) and strengths

Cycle accurate Timing accurate (thus required for
PLL, PHY and gate simulations)

Limited PSL assertions Full PSL assertions

Line and Block coverage Block, FSM, expression coverage

Waveforms, GDB/DDD Waveforms, source debugger

Faster simulations (2-5x) Slower simulations

Limited support Excellent customer support

Free Not quite ©

Verification Productivity (cont.)

e Code Reuse
— C++ encapsulation, inheritance
— Verification infrastructure

— Test components

o Test Writing Methodology

— Every test is a class that inherits the test base class
— The test base class specifies the execution order for a set of

virtual methods
— Chip-level tests are constructed from subchip tests

 Regression Testing
— Hourly, nightly and weekly runs with random seeds

— Background random runs
— Automated web-based reporting system (next slide)

Tracking all Tests

» All tests were tracked in a database with web front-end:
— Did this test ever work, and when?
— What versions did the test work in?
— What changes were made?

Rev Run Rev Rev
Num | History User Description

15332 denney | Add PCI express test
15331 |2 pass wsnyder | Doing something nasty
2 fail w/mod
15330
15329 |1 pass pholmes | New incredible MPI fabric test added

Substitution Modeling

* We allowed many types of modules to be substituted into
the same consistent chip model cell, and can compare
outputs:

VerBfm.sp
Bus Functional Model

VerShad.sp
Shadow Module

VerBeh.sp
Behavioral Module

VerRtl.sp
RTL Wrapper Module

Ver.sp

Translated
EE automatically from EE L

Ver.v

Vvvy

Conversion Wrapper(s) B

Vvy

Co-Verification: Booting Linux

* Our major software goal was to boot Linux

— Linux kernel 2.6 with some modifications (_1
— Initialization trimmed to 16 million instructions .;311’5?}%
B\ &
ﬁéﬂi.;ﬁ"
Model Simulator Boot Time
Hardware N/A ~1 sec
Beh SimH 50 sec
Beh CPU + rest SystemC OSC 13 h.
Verilated CPU + SysC Verilator+OSC 18 h.
Cadence NCSIM 140 h.

Verilog RTL

Verification Statistics

20,000 tests
5,000+ per night (<20% of the tests required any license)

22,000,000 test runs over the last 12 months:
— 230 compute years
— 2.1 hours of “real chip” time

1,300 critical bugs found, as follows:

Block HL M RTL Total
L2 Cache 304 (90%) | 34 (10%) 338
DMA Engine | 217 (82%) | 47 (18%) 264
FSW Switch | 158 (79%) | 41 (21%) 199
PCle-PMI 159 (84%) | 30 (16%) 189
CHIP 3 (21%) 11 (79%) 14

Verification Statistics

20,000 tests
5,000+ per night (<20% of the tests required any license)

22,000,000 test runs over the last 12 months:
— 230 compute years

L2 Cache
DMA Engine
FSW Switch
PCle-PMI
CHIP

13

How did we do?

e Initial debug went smoothly
—Dec 28, 2006: Chips arrive
—Jan 22, 2007: Linux, NFS, Emacs, make....
—Jan 29, 2007: MPI networking node-to-node.

* Only a few bugs found in Silicon, all with workarounds
— All due to verification holes
— Filled now, of course ©

Conclusions

Mixing Verilog RTL and SystemC/C++ worked well

Fast simulation models enabled early software debug

Our strategy provided for a higher level of control over:
— Simulation speed
— Accuracy
— License usage & overall verification cost

Open source tools allowed the team to run more tests and find
bugs earlier

Used the best public domain and commercial tools each for
what they do best

Public Tool Sources

* The public domain design tools we used are available at
http://www.veripool.com

— Make::Cache - Object caching for faster compiles
— Schedule::Load — Load Balancing (ala LSF)

— SystemPerl - *AUTOs*/ for SystemC

— Verilator — Compile SystemVerilog into SystemC
— Verilog-Mode - /*AUTO...*/ Expansion

— Verilog-Perl — Verilog preprocessor

— Vregs — Extract register and class
declarations from documentation

e The SIMH instruction set simulator is at
http://simh.trailing-edge.com

http://www.veripool.com/
http://simh.trailing-edge.com/

	Functional Verification of the SiCortex Multiprocessor System-on-a-Chip
	Agenda
	What We’ve Built
	Our Product: SC5832
	Verification Challenges
	Verification Productivity
	Verilator and Incisive
	Verification Productivity (cont.)
	Tracking all Tests
	Substitution Modeling
	Co-Verification: Booting Linux
	Verification Statistics
	Verification Statistics
	How did we do?
	Conclusions

