

Functional Verification of the SiCortex Multiprocessor System-on-a-Chip

Oleg Petlin, Wilson Snyder wsnyder@wsnyder.org

June 7, 2007

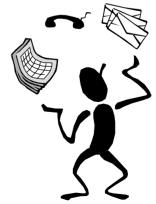
Agenda

- What we've built
- Verification challenges
- Verification productivity
- Substitution modelling
- Co-verification
- Verification statistics
- Conclusions
- Q&A

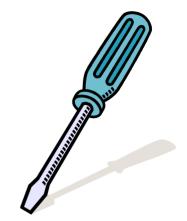
What We've Built

- Complete computer system
 - Rethought how a cluster should be built
- Custom processor chip
 - Reduced power
 - Maximized memory performance
 - Integrated high performance interconnect
- Software
 - Open Source: Linux, GNU, and MPI

Our Product: SC5832


- 5832 Gigaflops
- 7776 Gigabytes DDR memory
 - 972 6-core 64-bit nodes
- 2916 2 GByte/s fabric links
 - 500 GByte/s bisection bandwidth
 - 270 GByte/s PCI-E bandwidth
 - 18 KW
 - 1 Cabinet

There's a small version too...


Verification Challenges

- High design complexity
 - 1.2 million lines of RTL -> 198 million transistors
- Both purchased IP and internal developments
- High programmability 6 CPUs and DMA
- Co-verification of Linux kernel and device drivers
- Control the overall verification cost
 - Verilog simulator speed and license limitations
 - How to find more bugs for less w/o compromising the quality of verification?
 - Project deadlines

Verification Productivity

- Verification Tools
 - Languages, libraries, and simulators
 - C++, STL
 - SystemC verification library and TLM
 - OSCI SystemC
 - Cadence Incisive

- Open source productivity tools (<u>http://www.veripool.com</u>)
 - Vregs (Register documentation -> headers & verification code)
 - Verilog-Mode (saves writing 30% of the Verilog lines !)
 - SystemPerl (saves writing 40% of SystemC lines !)
 - Verilator (Verilog RTL -> C++/SystemC cycle-accurate model)

Verilator and Incisive

Verilator + OSC

Full SystemC Synthesizable Verilog-2005 C++ Interface

Two-State

Cycle accurate

Limited PSL assertions Line and Block coverage Waveforms, GDB/DDD Faster simulations (2-5x) Limited support Free

Incisive

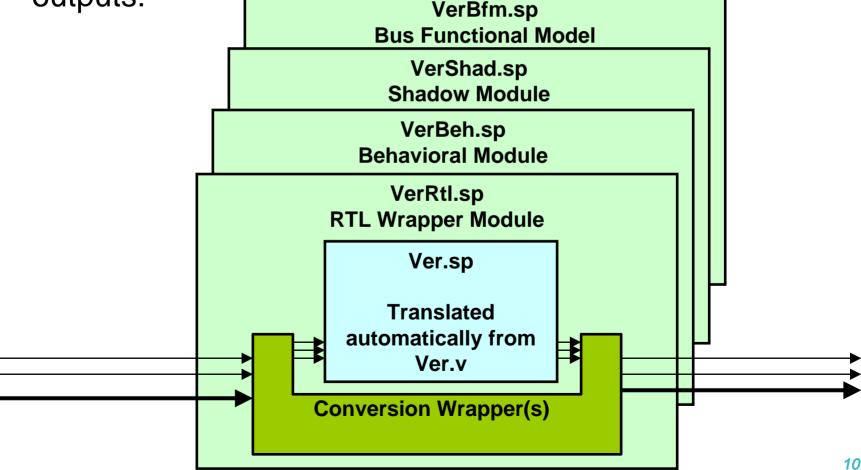
Full SystemC Fully Verilog-2005 compliant PLI/VPI compliant interface Four-State (0,1,X,Z) and strengths Timing accurate (thus required for PLL, PHY and gate simulations) **Full PSL assertions** Block, FSM, expression coverage Waveforms, source debugger

Slower simulations

Excellent customer support

Verification Productivity (cont.)

- Code Reuse
 - C++ encapsulation, inheritance
 - Verification infrastructure
 - Test components
- Test Writing Methodology
 - Every test is a class that inherits the test base class
 - The test base class specifies the execution order for a set of virtual methods
 - Chip-level tests are constructed from subchip tests
- Regression Testing
 - Hourly, nightly and weekly runs with random seeds
 - Background random runs
 - Automated web-based reporting system (next slide)


Tracking all Tests

- All tests were tracked in a database with web front-end:
 - Did this test ever work, and when?
 - What versions did the test work in?
 - What changes were made?

Run	Rev	Rev
History	User	Description
1 fail	denney	DMA engine support for mandelbrot
	denney	Add PCI express test
2 pass	wsnyder	Doing something nasty
2 fail w/mod		
1 pass	pholmes	New incredible MPI fabric test added
	History 1 fail 2 pass 2 fail w/mod	HistoryUser1 faildenney2 passdenney2 fail w/modwsnyder

Substitution Modeling

 We allowed many types of modules to be substituted into the same consistent chip model cell, and can compare outputs:

Co-Verification: Booting Linux

- Our major software goal was to boot Linux
 - Linux kernel 2.6 with some modifications
 - Initialization trimmed to 16 million instructions

Model	Simulator	Boot Time	
Hardware	N/A	~1 sec	
Beh	SimH	50 sec	
Beh CPU + rest SystemC	OSC	13 h.	
Verilated CPU + SysC	Verilator+OSC	18 h.	
Verilog RTL	Cadence NCSIM	140 h.	

Verification Statistics

- 20,000 tests
- 5,000+ per night (<20% of the tests required any license)
- 22,000,000 test runs over the last 12 months:
 - 230 compute years
 - 2.1 hours of "real chip" time
- 1,300 critical bugs found, as follows:

				E
Block	HLM	RTL	Total	\neg
L2 Cache	304 (90%)	34 (10%)	338	
DMA Engine	217 (82%)	47 (18%)	264	
FSW Switch	158 (79%)	41 (21%)	199	
PCIe-PMI	159 (84%)	30 (16%)	189	
CHIP	3 (21%)	11 (79%)	14	

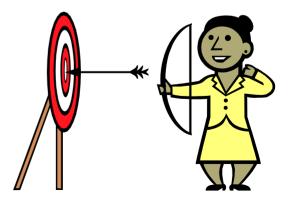
Verification Statistics

- 20,000 tests
- 5,000+ per night (<20% of the tests required any license)
- 22,000,000 test runs over the last 12 months:
 - 230 compute years
 - 2.1 hours of "real chip" time
- 1,300 chical bugs found, as follows:

Teaser

BlockL2 CacheDMA EngineFSW SwitchPCIe-PMICHIP

230 compute years cost us \$250K in Opteron Servers.


Our system with 648 cores delivers more than 3x the simulations per dollar, in 1/12th the space. And this isn't even in the market it is tuned for.

And we'd save \$17,000 in power/year!

9 cents /kWH, 24KW for 86 servers drops to 2KW per SC648

How did we do?

- Initial debug went smoothly
 - Dec 28, 2006: Chips arrive
 - -Jan 22, 2007: Linux, NFS, Emacs, make....
 - Jan 29, 2007: MPI networking node-to-node.
- Only a few bugs found in Silicon, all with workarounds
 - -All due to verification holes
 - Filled now, of course ©

Conclusions

- Mixing Verilog RTL and SystemC/C++ worked well
- Fast simulation models enabled early software debug
- Our strategy provided for a higher level of control over:
 - Simulation speed
 - Accuracy
 - License usage & overall verification cost
- Open source tools allowed the team to run more tests and find bugs earlier
- Used the best public domain and commercial tools each for what they do best

Public Tool Sources

- The public domain design tools we used are available at http://www.veripool.com
 - Make::Cache Object caching for faster compiles
 - Schedule::Load Load Balancing (ala LSF)
 - SystemPerl /*AUTOs*/ for SystemC
 - Verilator Compile SystemVerilog into SystemC
 - Verilog-Mode /*AUTO...*/ Expansion
 - Verilog-Perl Verilog preprocessor
 - Vregs Extract register and class declarations from documentation
- The SIMH instruction set simulator is at <u>http://simh.trailing-edge.com</u>

