
Functional Verification of the SiCortex
Multiprocessor System-on-a-Chip

Oleg Petlin, Wilson Snyder
wsnyder@wsnyder.org

June 7, 2007

2

Agenda

• What we’ve built
• Verification challenges
• Verification productivity
• Substitution modelling
• Co-verification
• Verification statistics
• Conclusions
• Q&A

3

What We’ve Built

• Complete computer system
– Rethought how a cluster should be built

• Custom processor chip
– Reduced power
– Maximized memory performance
– Integrated high performance interconnect

• Software
– Open Source: Linux, GNU, and MPI

4

Our Product: SC5832

5832 Gigaflops
7776 Gigabytes DDR memory

972 6-core 64-bit nodes

2916 2 GByte/s fabric links
500 GByte/s bisection bandwidth

18 KW

270 GByte/s PCI-E bandwidth

1 Cabinet

There’s a small version too…

5

Verification Challenges

• High design complexity
– 1.2 million lines of RTL -> 198 million transistors

• Both purchased IP and internal developments
• High programmability - 6 CPUs and DMA
• Co-verification of Linux kernel and device drivers
• Control the overall verification cost

– Verilog simulator speed and license limitations
– How to find more bugs for less w/o compromising the quality of

verification?
– Project deadlines

6

Verification Productivity

• Verification Tools
– Languages, libraries, and simulators

• C++, STL
• SystemC verification library and TLM
• OSCI SystemC
• Cadence Incisive

– Open source productivity tools (http://www.veripool.com)
• Vregs (Register documentation -> headers & verification code)
• Verilog-Mode (saves writing 30% of the Verilog lines !)
• SystemPerl (saves writing 40% of SystemC lines !)
• Verilator (Verilog RTL -> C++/SystemC cycle-accurate model)

http://www.veripool.com/

7

Verilator and Incisive

Verilator + OSC Incisive
Full SystemC
Synthesizable Verilog-2005

Full SystemC
Fully Verilog-2005 compliant

C++ Interface PLI/VPI compliant interface

Line and Block coverage Block, FSM, expression coverage

Two-State Four-State (0,1,X,Z) and strengths

Cycle accurate Timing accurate (thus required for
PLL, PHY and gate simulations)

Limited PSL assertions Full PSL assertions

Waveforms, GDB/DDD Waveforms, source debugger

Faster simulations (2-5x)
Limited support

Slower simulations
Excellent customer support

Free Not quite ☺

8

Verification Productivity (cont.)

• Code Reuse
– C++ encapsulation, inheritance
– Verification infrastructure
– Test components

• Test Writing Methodology
– Every test is a class that inherits the test base class
– The test base class specifies the execution order for a set of

virtual methods
– Chip-level tests are constructed from subchip tests

• Regression Testing
– Hourly, nightly and weekly runs with random seeds
– Background random runs
– Automated web-based reporting system (next slide)

9

Tracking all Tests

• All tests were tracked in a database with web front-end:
– Did this test ever work, and when?
– What versions did the test work in?
– What changes were made?

Rev
Num

Run
History

Rev
User

Rev
Description

r5333 1 fail denney DMA engine support for mandelbrot

r5332 denney Add PCI express test

r5331 2 pass
2 fail w/mod

wsnyder Doing something nasty

r5330

r5329 1 pass pholmes New incredible MPI fabric test added

10

Substitution Modeling

VerBfm.sp
Bus Functional Model

• We allowed many types of modules to be substituted into
the same consistent chip model cell, and can compare
outputs:

VerShad.sp
Shadow Module

VerBeh.sp
Behavioral Module

VerRtl.sp
RTL Wrapper Module

Ver.sp

Translated
automatically from

Ver.v

Conversion Wrapper(s)

11

Co-Verification: Booting Linux

• Our major software goal was to boot Linux
– Linux kernel 2.6 with some modifications
– Initialization trimmed to 16 million instructions

Model Simulator Boot Time
Hardware N/A ~1 sec
Beh SimH 50 sec
Beh CPU + rest SystemC OSC 13 h.
Verilated CPU + SysC Verilator+OSC 18 h.
Verilog RTL Cadence NCSIM 140 h.

12

Verification Statistics

• 20,000 tests
• 5,000+ per night (<20% of the tests required any license)
• 22,000,000 test runs over the last 12 months:

– 230 compute years
– 2.1 hours of “real chip” time

• 1,300 critical bugs found, as follows:

Block HLM RTL Total
L2 Cache 304 (90%) 34 (10%) 338
DMA Engine 217 (82%) 47 (18%) 264
FSW Switch 158 (79%) 41 (21%) 199
PCIe-PMI 159 (84%) 30 (16%) 189
CHIP 3 (21%) 11 (79%) 14

13

• 20,000 tests
• 5,000+ per night (<20% of the tests required any license)
• 22,000,000 test runs over the last 12 months:

– 230 compute years
– 2.1 hours of “real chip” time

• 1,300 critical bugs found, as follows:

Block HLM RTL Total
L2 Cache 304 (90%) 34 (10%) 338
DMA Engine 217 (82%) 47 (18%) 264
FSW Switch 158 (79%) 41 (21%) 199
PCIe-PMI 159 (84%) 30 (16%) 189
CHIP 3 (21%) 11 (79%) 14

Verification Statistics

230 compute years cost us $250K in
Opteron Servers.
Our system with 648 cores delivers
more than 3x the simulations per
dollar, in 1/12th the space. And this
isn’t even in the market it is tuned for.
And we’d save $17,000 in power/year!

9 cents /kWH, 24KW for 86 servers drops to 2KW per SC648

Teaser

14

How did we do?

• Initial debug went smoothly
– Dec 28, 2006: Chips arrive
– Jan 22, 2007: Linux, NFS, Emacs, make….
– Jan 29, 2007: MPI networking node-to-node.

• Only a few bugs found in Silicon, all with workarounds
– All due to verification holes
– Filled now, of course ☺

15

Conclusions

• Mixing Verilog RTL and SystemC/C++ worked well

• Fast simulation models enabled early software debug

• Our strategy provided for a higher level of control over:
– Simulation speed
– Accuracy
– License usage & overall verification cost

• Open source tools allowed the team to run more tests and find
bugs earlier

• Used the best public domain and commercial tools each for
what they do best

16

Public Tool Sources

• The public domain design tools we used are available at
http://www.veripool.com

– Make::Cache - Object caching for faster compiles
– Schedule::Load – Load Balancing (ala LSF)
– SystemPerl - /*AUTOs*/ for SystemC
– Verilator – Compile SystemVerilog into SystemC
– Verilog-Mode - /*AUTO…*/ Expansion
– Verilog-Perl – Verilog preprocessor
– Vregs – Extract register and class

declarations from documentation

• The SIMH instruction set simulator is at
http://simh.trailing-edge.com

http://www.veripool.com/
http://simh.trailing-edge.com/

	Functional Verification of the SiCortex Multiprocessor System-on-a-Chip
	Agenda
	What We’ve Built
	Our Product: SC5832
	Verification Challenges
	Verification Productivity
	Verilator and Incisive
	Verification Productivity (cont.)
	Tracking all Tests
	Substitution Modeling
	Co-Verification: Booting Linux
	Verification Statistics
	Verification Statistics
	How did we do?
	Conclusions

